Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework.
نویسندگان
چکیده
The delocalized, anticorrelated component of pigment vibrations can drive nonadiabatic electronic energy transfer in photosynthetic light-harvesting antennas. In femtosecond experiments, this energy transfer mechanism leads to excitation of delocalized, anticorrelated vibrational wavepackets on the ground electronic state that exhibit not only 2D spectroscopic signatures attributed to electronic coherence and oscillatory quantum energy transport but also a cross-peak asymmetry not previously explained by theory. A number of antennas have electronic energy gaps matching a pigment vibrational frequency with a small vibrational coordinate change on electronic excitation. Such photosynthetic energy transfer steps resemble molecular internal conversion through a nested intermolecular funnel.
منابع مشابه
Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes.
Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynt...
متن کاملQuantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer.
Recent experiments suggest that electronic energy transfer in photosynthetic pigment-protein complexes involves long-lived quantum coherence among electronic excitations of pigments. [Engel et al., Nature, 2007, 446, 782-786.] The observation has led to the suggestion that quantum coherence might play a significant role in achieving the remarkable efficiency of photosynthetic light harvesting. ...
متن کاملQuantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).
Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosyn...
متن کاملPhotosynthetic pigment - protein complexes as highly connected networks : implications for robust energy transport Lewis
Photosynthetic pigment-protein complexes (PPCs) are a vital component of the light-harvesting machinery of all plants and photosynthesizing bacteria, enabling efficient transport of the energy of absorbed light towards the reaction centre, where chemical energy storage is initiated. PPCs comprise a set of chromophore molecules, typically bacteriochlorophyll species, held in a well-defined arran...
متن کاملDesign principles of photosynthetic light-harvesting.
Photosynthetic organisms are capable of harvesting solar energy with near unity quantum efficiency. Even more impressively, this efficiency can be regulated in response to the demands of photosynthetic reactions and the fluctuating light-levels of natural environments. We discuss the distinctive design principles through which photosynthetic light-harvesting functions. These emergent properties...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 4 شماره
صفحات -
تاریخ انتشار 2013